
  

OBSERVER-BASED DIAGNOSTIC SCHEME FOR LITHIUM-ION BATTERIES 
 

 

Zoleikha Abdollahi Biron 
Clemson University 

Greenville, SC-29607, USA 
zabdoll@clemson.edu 

Pierluigi Pisu 
Clemson University 

Greenville, SC-29607, USA 
pisup@clemson.edu 

Beshah Ayalew 
Clemson University 

Greenville, SC-29607, USA 
beshah@clemson.edu 

 

 

 

ABSTRACT 
This paper presents an observer-based fault diagnosis 

approach for Lithium-ion batteries. This method detects and 

isolates five fault types, which include sensor faults in current, 

voltage and temperature sensors, failure in fan actuator and a 

fault in battery State-of-Charge (SOC) dynamics. Current, 

voltage and temperature of the battery are taken as the only 

available measurements and a Kalman filter and a sliding mode 

observer are constructed. Three residuals derived from a 

combination of these observers generate fault signatures that are 

used to detect and isolate the sensor, actuator and SOC faults in 

the system. Simulation results show the effectiveness of the 

approach. 

INTRODUCTION 
Lithium-ion batteries provide higher power and energy 

densities than other existing batteries such as Ni-MH and Ni-Cd. 

Hence, they are widely used in various applications such as the 

PHEV/EV applications [1-2]. Long-life, high capacity, absence 

of memory effect and high energy to weight ratio are some of Li-

ion batteries’ characteristics that make them suitable energy 

storage for a range of applications [3]. Failures in Li-ion batteries 

can lead to damages, repairing costs and even serious 

consequences such as explosion due to short-circuiting and 

overheating. Some of these faults, if not detected or isolated, may 

cause to catastrophic failures. Comprehensive reviews of the 

different failure mechanisms can be found in [4] and [5].  Since 

Li-ion batteries have come in to popular use, fault diagnosis and 

health monitoring for Li-ion batteries have gathered much 

attention in the research community in recent years to enhance 

safety and reliability of these batteries for diverse applications 

[6-8].  

Li-ion battery dynamic behavior is a result of complex 

electrochemical processes, which have proven difficult to 

reproduce in a computationally expedient battery model. Most of 

the existing approaches in the literature use electrical equivalent 

circuit or electrochemical models for battery modeling. The 

electrochemical model can capture the electrochemical 

phenomena of the battery; it can be computationally too 

expensive for fault diagnosis purposes while the electrical 

equivalent circuit can be relatively simple. In equivalent circuit 

model several RC pairs can be added to characterize system’s 

dynamics. In this paper, we use an equivalent circuit coupled 

with a thermal model to describe Li-ion battery dynamics. 

The scarcity of available measurements of Li-ion batteries, 

which are basically limited to current, voltage and body-

temperature, make the fault diagnosis problem challenging. 

Several existing methods including the extended Kalman filter, 

autoregressive moving average model and fuzzy logic, have been 

used to detect different faults [7]. In [8], a nonlinear fault 

detection and isolation scheme has been developed using an 

equivalent circuit model to detect sensor and actuation faults. An 

observer based fault diagnostic approach used in [9] to estimate 

and detect some internal electrochemical faults. Ablay in [10], 

has used Kalman filter to detect and isolate sensor faults and 

unexpected resistance deviation.  

This paper combines a Kalman filter observer with 

nonlinear sliding mode observer to detect and isolate the faults 

and disturbance in the Li-ion battery. The rest of the paper is 

organized as follows. Section II presents modeling of the battery. 

Fault diagnosis process containing two observer designs is 

described in section III. In Section IV, we provide threshold 

setting method while simulation results with realistic current 

data are given and discussed in Section V. 

 

 SYSTEM MODELING  
Lithium- ion batteries can be modeled in different ways such 

as: electrochemical models [11-13], equivalent circuit models 

[14-16] and data driven models [18-19]. Here, we have 

considered an equivalent circuit for modeling and simulating the 

Li-ion battery.  The equivalent circuit mainly consists of three 

fundamental parts: electrical model, thermal model and battery 

SOC model. 
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Figure 1: Thevenin equivalent model for the battery 

A. Electrical model 

One of the most common modeling methods for battery 

modeling is a simple first-order Thevenin equivalent model. 

Inthis study a Thevenin equivalent model with time varying 

parameters has been considered to model the electrical 

characteristics of the battery with sufficient accuracy.  Fig.1 

shows the first-order Thevenin equivalent model.  

Dynamics of the first-order electric model can be described via 

the following equations: 

𝑑𝑉𝑐

𝑑𝑡
= −

𝑉𝑐

𝑅0𝐶0
+

𝐼

𝐶0
     (1) 

𝑉 = 𝐸0 − 𝐼𝑅 − 𝑉𝑐       (2) 

where 𝐸0 presents the open-circuit voltage,  𝑉 and I show the 

battery terminal voltage and current, respectively, 𝐶0 presents 

capacitance and finally, 𝑅 and 𝑅0 stands for the internal and over-

voltage resistances. It is worth mentioning that  𝑅0  and 𝑅 are 

nonlinear functions of battery state of charge (SOC) and battery 

temperature. 

𝑅0 = 𝐾10 + 𝐾20 𝑆𝑂𝐶. 𝑇𝑏𝑜𝑑𝑦 (3) 

𝑅1 = 𝐾11 + 𝐾21 𝑆𝑂𝐶. 𝑇𝑏𝑜𝑑𝑦 (4) 

where𝑇𝑏𝑜𝑑𝑦  is the battery body temperature (in ℃) and all 

𝐾10, 𝐾20, 𝐾11 𝑎𝑛𝑑 𝐾21 are different constant values for charging 

and discharging conditions. 

B. Thermal model 

A suitable thermal model is important for analyzing the 

thermal behavior of the battery. Battery temperature directly 

relates to heat transfer mechanism, which can be modeled with 

power loss in the electrical model resistors (𝑅0 and 𝑅) and heat 

exchange of battery with its surrounding environment. 

Therefore, battery temperature dynamics can be expressed by 

(5). This equation shows that the thermal model of the battery is 

coupled to electrical model and depends on time varying 

parameters in the electrical model such as resistors. 

𝑚_𝑐
𝑑𝑇𝑏𝑜𝑑𝑦

𝑑𝑡
= 𝐼2(𝑅 + 𝑅0) − ℎ𝐴 (𝑇𝑏𝑜𝑑𝑦 − 𝑇𝑎𝑚𝑏) (5) 

 

where 𝑚_𝑐 (in 𝐽/℃) is the effective heat capacity per cell, ℎA (in 

𝐽/℃) is the effective heat transfer per cell, 𝑇𝑎𝑚𝑏 (in ℃) is the 

ambient temperature. The effective heat transfer can be 

considered as function of fan setting based on the following 

equation: 

ℎ𝐴 = ℎ𝐴0 (1 +
𝑓𝑠

2
)     ,     ℎ𝐴0 = 0.07(𝐽/℃)                 (6) 

 

where 𝑓𝑠 presents the fan setting depending on the temperature: 

{

𝑓𝑠 = 0                        𝑜𝑓𝑓 𝑚𝑜𝑑𝑒
𝑓𝑠 = 1                    𝑖𝑓 𝑇 ≥ 30

∘𝐶 
𝑓𝑠 = 2                    𝑖𝑓 𝑇 ≥ 40

∘𝐶 
𝑓𝑠 = 3                    𝑖𝑓 𝑇 ≥ 45

∘𝐶 

  (7) 

 

C. State of Charge (SOC) 

Evolution of the SOC can be described with the following 

equations; 

 
𝑑𝑆𝑂𝐶

𝑑𝑡
= −

𝐼

𝐶0
     (8) 

𝑆𝑂𝐶 = 𝑆𝑂𝐶0 − ∫
𝐼

𝐶

𝑡

𝑡0
     (9) 

 

where C is the capacity of the battery in (A.h) 

 

FAULT DIAGNOSIS SCHEME 
Since Lithium-ion batteries are sealed packs, we assume that 

the only available measurements are of the voltage, current and 

temperature of the battery. Hence, estimating inherent 

parameters and the system’s states by designing observers is a 

practical way for health monitoring and fault diagnosis in this 

nonlinear system. As it is mentioned in the last section, 

parameters of the equivalent electro-thermal model are time 

varying and depend on the battery’s inherent characteristics such 

as SOC and battery temperature. This nonlinearity and time–

varying parameters make the battery a complex system for fault 

diagnosis.  In this study, fault in body temperature, voltage and 

current sensors have been considered in addition to a bias 

disturbance or fault on the SOC dynamics and an actuator 

(cooling fan) failure in the cooling system. The faults and 

disturbance are applied as individual fault scenario to the 

battery’s simulator designed in SIMULINK/MATLAB based on 

nonlinear dynamics equations (1)-(9). 

 

D. Kalman- filter Observer  

In this part, a Kalman filter approach has been designed to 

estimate SOC and 𝑉𝑐  as two states of the system while 

considering the battery voltage as the measurable output. 

Dynamics of the plant and observer can be written as the 

following sets of equations (10) and (11), respectively. 
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{

𝑑𝑉𝑐

𝑑𝑡
= −

𝑉𝑐

𝑅0𝐶0
+

𝐼

𝐶0
𝑑𝑆𝑂𝐶

𝑑𝑡
= −

𝐼

𝐶

                        (10) 

 

Dynamic of the observer can be described by 

 

{

𝑑𝑉𝑐̂

𝑑𝑡
= −

𝑉𝑐̂

𝑅0𝐶0
+

𝐼

𝐶0
+ 𝐿1(𝑉𝑚 − 𝑉̂)

𝑑𝑆𝑂𝐶̂

𝑑𝑡
= −

𝐼

𝐶
+ 𝐿2(𝑉𝑚 − 𝑉̂)

                 (11) 

 

Herein, 𝑉𝑚 is the measured voltage of the battery, 𝐿1and 𝐿2 

are Kalman observer’s gains. Therefore, error dynamics can be 

written as: 

  

{

𝑑𝑉𝑐̃

𝑑𝑡
= −

𝑉𝑐̃

𝑅0𝐶0
 + 𝐿1(𝑉𝑚 − 𝑉̂)

𝑑 𝑆𝑂𝐶̃

𝑑𝑡
= 𝐿2(𝑉𝑚 − 𝑉̂)

       (12) 

 

The observer gains, are selected such that the effect of both 

the process and measurement noises are suppressed and the error 

between the estimated and actual states of the system converge 

to zero irrespective of the initial conditions.   

Here, we assume the SOC change of the battery is limited to 

the linear region (30-80%) where in the open circuit voltage of 

the battery, 𝐸0, a linear function of SOC and body temperature. 

However, the design approach can be readily extended to the 

nonlinear SOC regions too. Under the above assumption, (2) can 

be rewritten in the following form:  

 

𝐸0 = 3.49 + 0.09 𝑆𝑂𝐶 + 0.001𝑇𝑏𝑜𝑑𝑦 (13) 

𝑉 = 𝐸0 − 𝐼𝑅 − 𝑉𝑐 (14) 

𝑉 = 3.49 + 0.09 𝑆𝑂𝐶 + 0.001𝑇𝑏𝑜𝑑𝑦 − 𝐼𝑅 − 𝑉𝑐 (15) 

 

As a result, both the estimated and the measured value of battery 

voltage can be written in the above form. 

 

{
𝑉𝑚 =  𝐸0 − I𝑅 − 𝑉𝑐 + ∆V

𝑉̂ = 𝐸0̂ − 𝐼𝑚𝑅 − 𝑉𝑐̂
 (16) 

therefore  

 

{
𝑉𝑚 = 3.49 + 0.09 (𝑆𝑂𝐶 + 𝑆𝑂𝐶𝑏𝑖𝑎𝑠) + 0.001𝑇𝑏𝑜𝑑y − 𝐼𝑚𝑅 − 𝑉𝑐 + ∆V

𝑉̂ = 3.49 + 0.09 𝑆𝑂𝐶̂ + 0.001𝑇𝑏𝑜𝑑𝑦_𝑚 − 𝐼𝑚𝑅̂ − 𝑉𝑐̂
 

 (17)  

  𝑅1 = 𝑉𝑚 − 𝑉̂  
𝑅1 = 0.09𝑆𝑂𝐶̃ + 0.001∆𝑇 − 𝑉𝑐̃ + ∆𝑉 + 𝐾𝑠𝑜𝑐𝑆𝑂𝐶𝑏𝑖𝑎𝑠   (18) 

 

where, 

𝑆𝑂𝐶̃ = 𝑆𝑂𝐶 − 𝑆𝑂𝐶̂ 

𝑉𝑐̃ = 𝑉𝑐 − 𝑉𝑐̂ (19) 

𝐼𝑚 = 𝐼 + ∆𝐼 
𝑇𝑏𝑜𝑑𝑦_𝑚 = 𝑇𝑏𝑜𝑑y + ∆𝑇 

 

where, 𝑅1 is the voltage residual, ∆𝑉 is the fault in voltage 

sensor, ∆𝑇 is the fault in temperature sensor, 𝑆𝑂𝐶𝑏𝑖𝑎𝑠 is the bias 

disturbance or fault on SOC, 𝐾𝑠𝑜𝑐 is a constant value , 𝑅̂ is 

estimated value for R in the observer based on estimated SOC 

and measured temperature, 𝐼𝑚 is measured current, 𝑇𝑏𝑜𝑑𝑦𝑚is 

measured temperature and ∆𝐼 is fault in current sensor. 

Since the Kalman filter gains are designed such that the 

estimation errors converge to zero, (18) can be rewritten as the 

following: 

 
𝑅1 = 𝐾𝑠𝑜𝑐 𝑆𝑂𝐶𝑏𝑖𝑎𝑠 + 0.001∆𝑇 + ∆𝑉   (20) 

 

As it can be inferred from (20), the generated residual, 𝑅1, is 

a function of 𝑆𝑂𝐶𝑏𝑖𝑎𝑠 which also covers the effect of current error, 

fault in voltage and temperature sensors in addition to effect of 

fault in current sensor. Hence, any faults in voltage, temperature, 

current sensor and bias disturbance in SOC will show up in 𝑅1. 

E. Sliding Mode Observer 

Nonlinear observers such as sliding mode observers can 

preserve the essential nonlinearity of the system and make the 

observer design process easier for systems with highly nonlinear 

dynamics. In this part, a nonlinear observer, based on sliding 

mode approach has been designed to detect the current sensor 

fault.   

{
 
 

 
 𝑚_𝑐

𝑑𝑇𝑏𝑜𝑑𝑦
𝑑𝑡

=  𝐼2(𝑅 + 𝑅0) − ℎ𝐴0 (1 +
𝑓𝑠
2
) (𝑇𝑏𝑜𝑑𝑦 − 𝑇𝑎𝑚𝑏)

𝑚_𝑐
𝑑𝑇̂𝑏𝑜𝑑𝑦
𝑑𝑡

= 𝐼2𝑚(𝑅̂ + 𝑅0̂) − ℎ𝐴0 (1 +
𝑓𝑠̂
2
) (𝑇̂𝑏𝑜𝑑𝑦 − 𝑇𝑎𝑚𝑏) + 𝜂

  

 (21) 

Herein, 𝜂 = 𝐾. 𝑠𝑔𝑛(𝑇𝑏𝑜𝑑𝑦_𝑚 − 𝑇̂𝑏𝑜𝑑𝑦) and 𝑠𝑔𝑛 (. ) is the sign 

function. 

Assuming  
𝐼2𝑚 = 𝐼2  + 𝛿𝐼 (22) 

The error dynamics is described by (23):   

𝑚_𝑐
𝑑𝑇̃𝑏𝑜𝑑𝑦

𝑑𝑡
=  𝛿𝐼 (𝑅 + 𝑅0 − 𝑅̃ + 𝑅0̃ ) − 𝐼

2(𝑅̃ + 𝑅0̃) −

ℎ𝐴0 (𝑇̃𝑏𝑜𝑑𝑦) − ℎ𝐴0 
∆𝑓𝑠

2
(𝑇̂𝑏𝑜𝑑𝑦 − 𝑇𝑎𝑚𝑏) +

 𝐾. 𝑠𝑔𝑛(𝑇𝑏𝑜𝑑𝑦_𝑚 − 𝑇̂𝑏𝑜𝑑𝑦)  

 (23) 

The sliding manifold is described as estimation error of the 

temperature of the battery: 

𝑆 = 𝑒 = 𝑇𝑏𝑜𝑑𝑦 − 𝑇̂𝑏𝑜𝑑𝑦 (24) 

The Lyapunov candidate, is chosen as (25), to analyze the 

stability of the observer error dynamics  

𝑉 =  
1

2
𝑆𝑇𝑆 (25) 

Then, 

𝑉̇ = 𝑆𝑆̇ = 𝑒𝑒̇     (26) 
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To have negative 𝑉̇ as sufficient condition for stability, the 

sliding mode’s gain, K, is selected large enough to satisfy the 

constraint.  
 

𝑖𝑓 𝐾 > |
(𝑅+𝑅0)

𝑚𝑐
|     then 𝑉̇ < 0  (27) 

Herein, 𝑅 and 𝑅0 can be considered with their maximum 

possible values. 

 

On the sliding manifuld  𝑆 = 0 , 

 𝑇̃𝑏𝑜𝑑𝑦 = 0   𝑎𝑛𝑑   
𝑑𝑇̃𝑏𝑜𝑑𝑦

𝑑𝑡
= 0  

𝜂 =  𝐾. 𝑠𝑔𝑛(𝑇̃𝑏𝑜𝑑𝑦) (28) 

 

On the sliding manifold, the equivalent control of the sliding 

mode can be extracted with a low pass filter as: 

𝑅2 = 𝑓𝑖𝑙𝑡𝑒𝑟 [
𝑚_𝑐

(𝑅+𝑅0)
 𝐾. 𝑠𝑔𝑛(𝑇̃𝑏𝑜𝑑𝑦)] (29) 

 As it can be inferred from (29), the current sensor fault along 

with the faults in the temperature sensor and fan’s actuator fault 

will show up in the generated residual, 𝑅2.   

In the next step, using the estimated temperature via sliding 

mode observer and the measured battery temperature, the third 

residual, 𝑅3 will be generated.  

𝑅3 = 𝑇𝑏𝑜𝑑𝑦_𝑚 − 𝑇̂𝑏𝑜𝑑𝑦 (30) 

Since the estimation error of battery temperature in the 

sliding manifold converges to zero, 𝑅3 will show failure and 

faults in the battery system, which cause to changes in battery 

temperature dynamics. As a result, failure in the fan and fault in 

temperature sensor will show up in 𝑅3.  

 In the next section, based on probability density analysis for 

each of these residuals, a threshold will be set to generate a fault 

signature. 

THRESHOLD SETTING 
The generated residuals can be evaluated based on selected 

thresholds. Various methods for threshold setting have been 

addressed in different studies [10], [19]. In this paper, probability 

density analysis has been used for each residual to find optimum 

thresholds such that the probabilities of false alarms and of 

misdetection have their minimum possible values.  

To set a threshold, for each residual, probability densities for 

both faulty and non-faulty data of the residuals are plotted as in 

Fig 2. The intersection of the plots shows the optimum value of 

the threshold. The plot depicts the probability density of the 

voltage residual(𝑅1). The probability density analysis has been 

similarly used for the current residual (𝑅2) and the temperature 

residual (𝑅3). 

It can be demonstrated from Fig. 2 that, a fault in the battery 

system changes the mean and standard deviation of normal data’s 

probability density. So, in all three cases, thresholds can be 

selected based on means and standard deviations in the fault-free 

cases. Hence, thresholds for voltage and current residuals, 𝑅1 and  

Figure 2: Probability density analysis of voltage residual 

𝑅2, have been selected as 𝛾1 = 𝜇1 + 1.1𝜎1 and 𝛾2 = 𝜇2 + 4.4𝜎2 

respectively. 

These thresholds are sensitive to fault detection while the 

probabilities of false alarms are small too. Also, for the last 

residual,  𝑅3 which is temperature residual, the threshold is 

selected as 𝛾3 = 𝜇3 + 1.1𝜎3 based on the probability analysis. 

Whenever one of these residuals surpasses its own threshold, a 

fault detection signal will be triggered to declare that a fault is 

detected in the system. 

|𝑅𝑖| > 𝛾𝑖 (31) 

Fault isolation is not the same as fault detection in a system. 

Indeed, in order to isolate a fault in a system a unique signature 

based on all available residuals in the system, is required. By 

considering designed thresholds for residuals, fault signature can 

be derived and evaluated as in Table 1. It can be demonstrated 

that, all faults, failure and disturbance in the system have their 

own unique signature. Hence, in case of individual fault scenario 

in the battery, detection and isolation of the faults can be 

guaranteed based on the three residuals and the signature table.  

 

Table 1. Faults signature table 

             

               Fault 

    

              

Residual    

SOC 

bias 

Voltage 

sensor 

fault 

Fan 

actuator 

Current 

sensor 

fault 

Body 

temp 

fault 

𝑅1 1 1 0 0 1 

𝑅2 1 0 1 1 1 

𝑅3 0 0 1 0 1 
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RESULTS & DISCUSSIONS 
In this section, numerical simulation results in single fault 

scenario are discussed.  In order to simulate and analyze possible 

faults in a realistic scenario, we used experimental set of data for 

the applied current to the battery. Also, a white Gaussian noise is 

added as measurement noise to each measured output. 

To simulate the sensors faults, a 1 𝑣 bias voltage on voltage 

sensor at 𝑡 = 1500𝑠𝑒𝑐 and a 1℃ bias fault on body temperature 

sensor at 𝑡 = 2900 𝑠𝑒𝑐 have been considered. Also, a gain fault 

on current sensor is injected at 𝑡 = 2500 𝑠𝑒𝑐. Cooling fan 

actuator’s failure is simulated as actuator fault at 𝑡 = 2000𝑠𝑒𝑐. 

The failure and each of sensor faults lasts for 100 𝑠𝑒𝑐 in the 

system. In addition, the effect of disturbance in SOC, is 

simulated with a trapezoid form of the disturbance starting at 𝑡 =
1000 𝑠𝑒𝑐 and ending at 𝑡 = 1120 𝑠𝑒𝑐. Fig.3 shows all 

mentioned faults in the system. All available measurements 

containing current, voltage and body temperature in presence of 

the faults are depicted in Fig.4.  

Fig.5 illustrates the residuals while faults and SOC 

disturbance occur in the system. Each fault can affect one or 

more residuals as it is discussed in Section III. Failure in fan 

actuator, faults in voltage and body temperature sensors will 

affect the voltage residual 𝑅1. Once one of these faults occurs in 

the system, 𝑅1 will exceed the threshold 𝛾1 and will trigger the  

 

Figure 3: Possible faults and failures injected in battery’s system 

 

 

fault detection signal. As it can be inferred, the bias in SOC, fan 

actuator’s failure and faults in current and body temperature 

sensors have appeared in 𝑅2. In a similar case, Fig.5 clarifies that 

the residual 𝑅3 is sensible to fan actuator’s failure and the fault 

in body temperature sensor. Since the temperature dynamics of 

the battery is slow, the effect of the failure in the fan will last 

more than 100 secs in the system and this effect can be seen in 

𝑅2 and  𝑅3. 

 

Figure 4: Measureable input and outputs of the battery 

 

Figure 5: Residuals in the presence of faults and SOC 

disturbance 
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Figure 6: Residuals signature in the presence of faults and SOC 

disturbance 

As a conclusion, fault in voltage sensor appears only in  𝑅1 

and fault in current sensor affects only 𝑅2, while faults in 

temperature sensor can be seen in all residuals. Also, failure in 

fan actuator changes the value of  𝑅2 and  𝑅3 while, disturbance 

in SOC changes  𝑅1 and  𝑅2. Hence, each fault or failure in the 

battery system has its own specific fault signature as presented 

in Table 1, which helps to detect and isolate the specific fault in 

the battery. The faults signatures are plotted in Fig.6 

CONCLUSION 
In this paper, an observer-based diagnosis scheme has been 

proposed and demonstrated to detect and isolate these faults in 

the battery system. Both sliding mode and Kalman filter theories 

are used to design separate observers in the diagnosis scheme. 

The designed observers generate three residuals which can be 

affected via different faults and failures as well as SOC bias. In 

order to isolate these abnormalities in the battery, thresholds are 

set for residuals to map each fault to a specific fault signature.  

Using the derived signature, it is demonstrated that five different 

types of faults, including current, temperature and voltage 

sensor, cooling fan actuator and SOC bias faults can be 

distinguished and isolated from each other.   
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